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The motion of a solid body with a cavity partly filled with fluid has usually 
been studied ln those cases where the displacement8 of the free surface are 
small relative to the cavity. Rumlanteev [l] for example, give8 references 
to this problem. In this work It i8 assumed that the fluid almost completely 
fills the cavity and that It has a nearly spherloal air bubble. The problem 
conslet. ln determination of the motion of the fluid and the bubble, as well 
as determlnatlon of the motion of the solid body containing the Cavity. 

Let 0 be the bubble radius, and p the density and vlacoelty of the 
fluid, respectively, u the coefftclent of surface tension at the boundary 
of fluid and bubble, and v a oharacterletlc value of the fluid velocltY 
relative to the cavity. The effects of viscosity on the motion may be neg- 
lected If Pvas IL. Deviation of the bubble shape from spherical will be 
small If the dynamic addition to the pressure (of the order of pv’) 1s ama 
by comparison with the pressure o/U specifying the surfaae tension. Both 
of the conditions 

va@p/p, v%<alp 

will be considered as fulfilled. They are satisfied for many fluids, for 
water ln particular, over a wide range of values of v and a . Under the 
above conditions the bubble can be conslderqd a8 an undeformable sphere of 
radius 0 , and the fluid as an Ideal fluid. 

Such a postulation does not permit consideration of the motion When the 
bubble comes into contact with the cavity walls and loses Its spherical Shape. 

The equations of motion are here set up and certain examples are InVeStl- 
gated. 

1. The motion of a solid body B with a singly connected Cavity D , 

bounded by a wall surface s , Is considered. An Ideal lnaxnpresslble fluid of 

denelty P Is Inside the cavity together with an undeformable 

E of radius ,a and mass m (for a bubble one may put m = 0) 

a/1 = E ,where 1 Is the minlmal distance from the center P 

E to the surface S of the walls; this ratio Is taken to be 

Let the center of inertia of the sphere be at Its geometric 

Since the fluid Is Ideal, motion of the sphere relative to Its 
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does not affect motion of the fluid and the body B , and from this point Of 

view it Is not substantial. Below, only motion of the body’ B , of the 

fluid and of the center of the sphere will be studied, and so without loss 

of generality, motion of the sphere E Is considered translatlonal and the 

forces acting on the sphere are replaced by their prlnclpal vector applied 

at p . 

Let the coordinate system 0x,x,x_, be rigidly connected to the body, R 

and. c are radii-vectors of any point from an Immovable and from a movable 

pole 0 , respectively. 

We consider the body forces acting on the fluid to have a potentla! 

U(c, t), then the potential energy of the fluid Is 

l-I = ppv-p\ Udv (1.1) 
D E 

The fluid flow Is assumed to be a potential flow with a velocity poten- 

tlal fp(c, t) . The function cp(c, t) Is harmonic In the r&Ion D,, occu- 

pled by the fluid and bounded by 

the surface C of the sphere .IJ 

- = (vo + b) x F) I1 i3n 

are satisfied by the function cp 

Here II and y are the unit 

respectively (Blg.l), v, Is the 

absolute velocity of the pole 0 

of the solid body. 

the wall surfaces S and from within by 

. The boundary conditions 

on s, acp- x--vpv onz .(1.2) 

on both surfaces. 

outer normals to the surfaces S and C , 

absolute velocj.ty of the point p , V, the 

# and I) Is the absolute angular velocity 

The position of the system consisting of the 

body B, the fluid, and the sphere E , will be 

determined by the radius-vector Ib of the pole 

0 * the radius-vector r, of the point p rela- 

tive to 0 (r,= $- l&) and three parameters 

Y, (2 = 1,2,3) giving the angular position of the 

solid body (for example, the ELiler angles). The 

quantltles introduced are connected with the velo- 

cities v,, v, and 0 by the kinematic relations 

(primes denote differentiation with respect to 

Fig. 1 
time t ln the movable system OX,X,JC~ ) 

dRc / dt = vo, v, = v. + w x r, + rp’ (1.3) 

and alSO by three equations connecting the projections of il) with the para- 
meters yi (altogether 9 scalar equations for the 18 scalar variables %, 

P,# YiS v*, VP, I8 ) . Ets means of these variables (coordinates and velocl- 

ties) and by the Present radius-vector c one may evidently express the 

position and velocity of any point of the body B and sphere E (the latter 

1s ln translatldnal motion). In addition, the velocity potential ~(r, t) 
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subjected to conditions (1.2) and, consequently, the velocity distribution 
In the fluid, are expressed by these variables, Thus, the’quantlty OS motion 
Q , the kinetic moment k relative to the point 0 , and the kinetic energy 
T of the system: body B plus fluid plus sphere E , at any moment of 
time may be exoreeaed as functions of &, rr, y,, v,, v, and u! . We note 
the relations 

Q = dT/ dv,, K = dT/dto ff.9 
which may be easily obtained, for example, from those givenin Chapter 9 of 

E21 l Formulas (1.4) hold if T Is considered to be a function of i&I z‘p, 

y<r ye,, I# and F,’ (vP is excluded by means of (1.3)). 

Ye write the equatfons of motion of the system In the form 

dQ / dt = F, dKtdt+v, xQ=m, (1.5) 

where I is the principal vector OS all external forces aCting on the sya- 
tern,, % the principal moment of those forces relative to the point 0 . We 

add to (1.5) the equation of motion of the sphere ,g , which we write In 

L&?grangian form d dT ST ---_,-= 
dt av,, dR, QP (1.6) 

In l@JatiOn (1.6) the energy T 16 considered to be a function of R,,, 

90 y1 s V,, II and V, in distinction from (1.4). !Phe generalized Sorce $ 
may be presented In the form 

Q, = Fp - i%‘I /’ aR, (1.7) 

Here #, is the principal vector of the external forces acting on the 
sphere (not connected with fluid preseure), g Is the potential energy of 

the fluid (1.1); the potential energy of the body B Is considered inde- 

pendent of the position OS the sphere E . 

Thus, if T, 4 and It 8re found as functions of the variables 5 I co 

(or 4 ), yl, ve, wI v, (or r,l), then Equations (1.5) and (1.6) may be 
formed, and together with the Wnematlc relations they represent a closed 
system. It la supposed that I, &, and @, are expressed ln the same vari- 
ables. 

The moaentum OS the whole system is determined by the SOmrufa 

Q = Q” + (m - eQ)v, (1.8) 

where 0” Is the momentum rf a system consisting of the solid body with the 
cavity D completely filled with fluid. Quantities with the superscript ’ 

relate to this system and are considered to be known Sunctlons of the coor- 
dinates and velocities OS the solid body. 

The kinetic energy of the system 

T = T, + T, + Y,mvp2 (1.9) 

where T, is the known expression for the kinetic energy of a solid body [2] 
and T, Is the Mnetic energy of the Sluld 
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T,=$ps (~)~dv=$~($(~~dS--$(P~ds) (1.10) 

Dl Is I: 

while the last term ln (1.9) Is the kinetic energy of the sphere z . 

Thus, It IS necessary to find the potential cp , to calculate Z’* from 

(l.lO), T and K from (1.9) and (1.10, and Q from (1.8). 

0. The Neumann problem for the function cp , harmonic in the region D, 

and satlPfylng the boundary conditions (1.2), wlll be solved by the alterna- 

tive Schwarz method. We seek the potential cp ln the form of an infinite 

series cp = cp” + ‘PI+ ‘p2 + . . - (2.1) 

where the tpak are functions harmonic ln D (everywhere inside S ) and the 

ek+l are functions harmonic outside the sphere 6 (k= 0,1,2,...). The tic- 

6lon cpO satisfies the first condition (1.2) and la the flow potential of 

the fluad when the cavity Is completely filled. The function cp’ satisfies 

the auxiliary condition 

d$ I av = vPv - 8cp” / av on z (2.2) 

so that the sum of cp” and cpl satisfies exactly the second condition of 

(1.2). Further, terms of the series satisfy fie boundary conditions 

aq2k I an = - ap-11 an on s (k = 1, 2,. . .) (2.3) 

for the functions cpak and the conditions 

apk+llav = - aplav on z (k= 1, 2,. . .) (2.4) 

for the functions c#~+‘. The Neumann problem for the mctlons cp’k”, 

harmonic outside the sphere E , Is solved ln an elementary manner, while 

the problem for the ,$k may be solved effectively lf the Green function for 

the Neumann problem la known in the region D . The convergence of the alter- 

nate Schwarz method (series (2.1)) f or the Dlrlchlet problem has been proved 

for regions of a very general form 133; Por the Neumann problem ln the given 

case, convergence apparently holds as well. If the series converges, then 

It la obvious that conditions (1.2) are fulfilled. We note that the Schwarz 

method may also be applied in the case when E Is not a sphere but. any other 

body for which the external Neumann problem Can be solved. 

We write a solution for the functions $k+lsatlsfylng condition 

aqk+V av = - ad av (2.5) 

on c , where u = I# k for k ) 1 (2.4) and u = cp’- v,c for k = 0 (2.2). 

We introduce a aoordlnate system py,y,y, with origin at the point p and 

axe8 parallel to those in the 0x,x,x, system. Let V, be the projection of 

the unit normal v on the vi-axis; then evidently y, = vie on X , We 

expand the right-hand side of (2.5) In a Taylor series with center at the 

point P 
a,$"+' 

~=-~vi~=-f(~UiY~+~~U~j~~~j+~~uijk~~~j~k+...) dv 
i i ii ijk (2.6) . 
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Here ui, u,,, etc., are partial derivatives of u with respect to JC,, 

z, and x,, etc., taken at the point p and summed over the Indices t,j,... 

from 1 to 3. The sums in (2.6) represent successive terms In the expansion 

of the harmonic function In Taylor series and 80 are homogeneous harmonic 

polynomials C41. On the sphere C they may be written In the form (the Y, 

Is a spherical function) 

Here the symbol (n) denotes the number of,lndlces t,j,...,k, I.e. the 

degree of the polynomial, and the summation Is taken from 1 to 3 for each 

index. The solution of the external Neumann problem for the sphere X under 
condition (2.6) will be 

(2.7) 

Here r, = r - ;FplS the radtis-vector of the point p (f,= a on C ). 

The potentfal cp' may be written In the form 

(9" = vor + co,@,’ + w2fD2 + 03@ (2.8) 

where UJ( 1s the projedtlon of the vector 0~ on the xi (or vi ) axis, and 

i' are functions harmonic In D (Zhukovskll potentials c5]) Satisfying the 

following condition on S : 

dOi / dn = (r x I& (i=i, 2, 3) 

The index $ on the right-hand side denotes projection of the vector on 

the xi-axis. 

We estimate the order of the functions 'pk and their derivatives in terms 

0f e=az. / Let the dimensions of the cavity be of the order of unit 

length and the distance 1 from p to S will be of the same order, so 

t-land 4-c. Then (9' and all Its derivatives are of the order O(1). 

Ce find from (2.7) that far from the sphere ,!! (rl- I - 1, in particular, 

on $ ) the function I$ and Its derivatives have tht order 0(c3). We find 

from tne same formula that for pi- a e E (In particular, on C ), /$I - E 

and lvcp'l - 1 l 
The function (p' is harmonic ln D , the characteristic 

dimension of which Is o(1) and according to (2.3) has a normal derivative 

of the order of 0' on S . It follows from this that 1 ‘p2 1 - ( D’p21 - 8’ 

everywhere In D . Analogously we get Ic+II$~ 1 - /v’p2kI -. e3k everywhere in 
D and 1 @x+11 -I~‘p2~+1 IN ~3~~3 far from E (for r,- 2 , In particular, 

on s ), and near the sphere E (for F,- a , In particular, on C ) we shall 

have 
, qkt’l _ #+I, 1 v[p2k+’ 1 - e3k 
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It follows from these estimates that cp = cp'+ cpl with an accuracy up to 

O(C') on the surface I: . The function cp" Is described on C by a segment 

of a Taylor series with center at the point p 

cP” = (P?J’ + 7 SoYi + $3 (P~YiYj + 0 (es) 

Here qPo = Cp" (rp, Q9 (Pi', Cpij’ are derivatives at p . 

We find from (2.7) that 

qlL+~(cp& vpi) Yi + $ x (Pij"YiYj + O (es) 
i ij 

(2.9) 

(2.10) 

on Z with k = 0 , taking account of the relation u,= cplo- up,, and where 

the summation Is over all Indices from 1 to 3. 

By addition of (2.9) and (2.10) we get for cp on c 

Cp = VP0 + + Z$ (3cFi’ - vpi) Yi + $2 (PiTYiYj + O (es) 
ij 

(2.11) 

3, We transform the expression for kinetic energy of the fluid (1.10) by 

applying Green's theorem and considering that dcp / dn = @I"/ an on S 

0 cpt$ds+ 

+$~(~-~)ds]=9{$~‘~ds+$[-~‘~+ 
c S c 

+ cp ($$ - g)] ds} = Tao + TI 

The first of the Integrals In (3.1) 

(3.1) 

represents the kinetic energy of the fluid when It completely fills the 

cavity and Is considered known. This integral Is expressed In terms of the 

adjoined moments of Inertia of the cavity [5], which may be calculated If 

I' Is known. 

We write the second Integral of (3.1) In the form 

T,’ = $ p $ [ - (p”vp~ + cp ($$ - vpv)] ds 
c 

(3.3) 

taking Into account (1.2). 

We substitute here the expreaslon for cp" from (2.9) and for CJI from 

(2.11), and for acp'/av we put the Taylor series segment analogous to (2.9), 

with accuracyup to 0(c3), taking into account the relation ovl= y, on C . 

Then the expression under the integral sign In (3.3) will reduce, to an accu- 

racy of -9, to a simple polynomial In Y, and the integral Is readily cal- 



culated, giving 

T,' = $PQ (v'pr" - vrJ2 - +PQv,~ + 0 (85) (3.4) 
where the surface area C Is If tne order of $ and where v(&-,~ Is the 

value of OCp' at the point p , equal to 

v(Pp"=vo + E %VQr8 (3.5) 8 
in accordance with (2.8). 

We write (1.10) in the form 

T == T” -+$pQ (vqpo - v*j2 + -+--pf2) vp” + 0 (e”) (3.6) 
taking into account (3.1) and (3.4), where X0= T,+ Tao is the kinetic 

energy of the body 3 when the cavity D la completely filled with fluid; 

this term is considered known. 

Upon expressing vr and vqpo In term8 of w by Formulas (1.3) and 

(3.5), and by differentiating according to (1.10, we find that 

K = K” + c pf2 x e, [(y~c7fp~“ - vp)~@Dpsl -I- 

-k $-PQ (3vqJp0 _” VP> x r, + mpXvp + 0 (8”) (3.7) 

where e, is a unit vector parallel to the x, (or u,f axis. 

We pass over to establl8~ent of the equation of motion for the sphere. 

We represent the function II in the region E by a Taylor series, omitting 

terms which after Integration with respect to ,g in (1.1) will be Of the 

order of e6 . (The volume n in the region ,g Is of the order of c3). 

From (1.1) we obtain 

JII = ps Udv - p \(UP + rlevUP) dv + 0(e6) 
D E 

The integral Over E Of the second term is equal to zero by virtue of the 

odd function rl.y7i?f,, and the integral on D does not depend on Rp, Then, 
from (1.7) Qp = Fp + pQvU, + o(e6) (3.8) 
in which the second term Is an Archimedes force. 

We substitute (3.6) and (3.8) into (1.6)~ conaldering that To ie inde- 

pendent of the coordinates and velocity Of the Point P 

(n+;pn)% - -gJ{$ kwpO) + [tv%” - VP) 01 wpP” } = 
= Fp + pQvU, + 0 (E') (3.9) 

Differentiation with respect to t traces the trajectory of the point p, 

i.e. 
-&$(R,, Q = ; buff%, 01 -t (vpv) vrpO (R,, t) 

By taking this equality into account and omitting term6 of the order of 

f? * we rewrite (3.9) in the final form 
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(m + ;pQ)~ = Fp + pQvU,+ ; pQw,=’ (3.10) 

Here wpo Is the acceleration of a fluid particle which would be at p 
If the cavity were completely filled, or In other words, the derivative of 

the velocity with respect to t along the trajectory of the fluid particle 

In the absence of the sphere E 

wp” = 
a (Wp”) 

at + b(PPW V(PPO (3.11) 

This quantity Is subject to the equation of fluid motion 

pwO = - ‘Jp” - pvu 

where pa 1s the fluid pressure with the cavity completely filled. 

We write an explicit expression for wP' by means of the Zhukovskll poten- 

tials, differentiating (3.5) along the trajebtory of the fluid particle 

+ 2 o,eiQjs 2 6.@jk- (W X rp)j 

sij C k 1 (3.12) 

In Formula (3.12) all derivatives of V with respect to coordinates x, 

are calculated at the point p . From (3.10) one may find equivalent forces 

due to hydrodynamic pressure 

Jj=mf$- F, = pi-&yi_.J, + ; @Wp” - $ PQ 3 
Thus, the values of [p, II. and Q are determined by Formulas (3.6), (3.7) 

and (1.8) to an accuracy of _ ~6, which guarantees high precision. Conse- 

quently, Equation (1.5) and (3.10) may be established with accuracy up to c6 

(the potential 11' and values of To, 0" and f" are considered known, as 

stated above). The equations of motlon obtained are evidently equivalent to 

the equations of motion of a system comprlsln& a solid body and a material 

point p acting on each other. 

The difference T - To has the order of e5(t-l - a'), I.e. the order of 

the ratio of the volume of the sphere E to the cavity D . This ls'just 

the order of perturbances In the equations of motion of the body with a fluid 

on account of the sphere E (If the masses of the body and fluid are of the 

same order). Hence, without loss of accuracy the equations of motion may be 

Integrated a8 follows. First we solve the equations of motion of the body 

when the cavity Is completely filled with fluid; I.e. we determine the 

undisturbed motion. The we Sntegrate Equation (3.10) for motion of the 

sphere E , assuming that the body motion Is undisturbed. Afterwards, we 

substitute the coordinates and velocities of the point p in Equation (1.5) 

and determine the disturbed motion of the body with fluid. 
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4, We consider certain examples. Let the fluid in the cavity be in 
translational motion (Vcp"~ vO), In absence of the sphere E 
either with translational motion of the body (p, = 0), or in tke 

this may occur 

spherical cavity (all #'- 0). 
case of a 

In this case the fluid, which completely 
fills the cavity, Is equivalent to a material mass point u at the center 
of Inertia of the fluid. 
(3.10) and (3.12) 

Assuming that 8,= 0 and U = 0, we flnd from 

%.J 3pQ dvo 
dt= pQf2m z--v (4.1) 

where o Is an arbitrary constant vector. 

This result may also be easily obtained from the theory of added mass. 

In particular, for a bubble (m = 0) 

dv,ldt = 3dv, / dt 

i.e. the absolute acceleration 1s three times the absohlte Cavity aCOelera- 
tlon C61. 

By substitution of ('1.1) In (3.6) we find, with accuracy to an lnessen- 
tlal constant, 

3 (?TL - pQ) pi2 
T-T-t- 2(p*+2m) uo2 (4.2) 

Thus, the presence of the sphere E In the fluid (for translational 
motion) 1s equivalent to a change In the fluid mass by a constant value, 
If the sphere E 1s a bubble, then the equivalent mass of the cavity with 
the fluid and bubble IS equal to u - 3pn . 

We study still another example: the motion of the sphere E In an 
ellipsoidal cavity 

Let v,= 0, a,= 0 and U = 0 , and the motion of the cavity be given as 
a uniform rotation about an Immovable axis passing through a point - the 
center of symmetry of the ellipsoid. 
together with (3.12) take the form 

On these assumptions Equation 7 3.10) 

r" i- 2w x r' -I- 0 x (0 x r) = 

a = 3psl/(pQ t2m) (OdaG3) (4.4) 

Here the absolute acceleration of the point p Is expressed by a trans- 
fer, a relative and a Corlolls acceleration, and the Index P, Is omitted 
everywhere. The Zhukovskll potentials for an ellipsoidal cavity are known 
to be 151 

m3 := k3qz3, k2 =(at2- aa2) i (al”+ aa2) (I k3 1-G 1) (4.5) 

The remaining S* are obtained from (4.5) by transposing Indices. Upon 
substitution of (4.5) Into (4.3) we obtain a linear system with constant 
coefficients descrlblng the motion of the point P . 

For simplicity we assume the cavity to rotate about its axis of symmetry 
((u,= IN*= 0, UJJ' u) ). Then, after substitution of (4.5) into (4.3) and taking 
projection on the x,-axes we obtain 

jE1--2cX& - 02z1= aw2k(k - 2)sl (k = ks) (4.6) 

f2 + 2oz$ - o% = ao2k(k + 2)~ 23 = 0 

It is evident from (4.6) that motion of the point P along the axls of 
rotation x3 proceeds by Inertia. Therefore, as It was to I.e expected, the 
positions of equlllbrlum of the sphere on the aXiS of rotation (x,= X2= 0 , 
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5’ x0 ‘) are unstable, and there are no other equilibrium positions of the 
system (4.6). 

We consider motion of the point p in the plane rotation x,x0 . An 
elementary Investigation of the characteristic equation for the first pair 
of (4.6) permits one to obtain the stablllty conditions for the equlllbrlum 
position x,= xp= 0 ln the X,X~ plane. These conditions (necessary and 
sufficient) have the form 

@)kl- fl)-l>a>l, O<lkl<i (4.7) 

For fulfillment of condition (4.7) the characteristic equation has no 
multiple pure Imaginary roots (no dls8lpatlOn In the system) and the sphere 
will not depart from the axis of rotation. By transformation of (4.7) and 
substltutlon of Q and k from (4.4) and (4.5) and assuming that a,> a,, 
we get 

For a bubble (n - 0) we obtain from (4.8) the stability condition for 
equlllbrlum In the plane of rotation In the form 

5, We consider the reaction of the solid body with a cavity containing 
fluid and an air bubble to the action of shock. At a certain Instant of 
time let there be applied to the body impulse (shock) forces and moments 
exciting lnstantaneou8 changes ln the values of v,,, p) and v 

same time, 
as bv,, 

T, I and Q also receive f&te lncre- 
Here the bubble can not be considered as an unde- 

formable sphere. The eifect of impulse forces on the surface tension may be 
neglected, as well as the effects on other forces limited In value. 

c potential Is obtained at the moment of shock as a finite 
The function 8cp Is harmonic ln D, and satisfies the 

ltlons (C Is an arbitrary constant) 

aacp / an = (bv, + bo x r) P on s, Gcp=c on E (5.1) 

The second condltlon of (5.1) expresses the absence of Impulse action on 
the surface C , 

The boundary problem for bp may be solved by the Schwarz method, on the 
assumption, analogous to (2.1) 

bcp = w + acp’ + a@ + . - . 
The functions 

bcp” 
b Ok are harmonic In D and a# k+l outside of E 

satlsfles the f rst condition of (5.1) and the remaining function: are ‘f 
while 

subjected to the conditions 

&gk+1= -dcp~k+aql~ on t (5.3) 

for b(p4 and for b(pak+', respectively. The index p refers to the value 
at the point p and the constant terms b(p,” are chosen for convenience. 
!Zhe functions Ct# have the same order with respect to Q 
2. 

as cpi In Section 

The potential bcp” Is determlned by an equation analogous to (2.8) 

We write blpl a first expanding condition (5.3) for k = 1 In a Taylor 
series centered at p 

(5.4) 

Here bcp,O , b'pl:, etc., denote corresponding derivatives at P . The solu- 
tion to the external Dlrlchlet problem for the sphere E with boundary con- 
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dltlon expressed by (5.4) 1s given by a formula analogous to (2.7) 

*TX = - ; 

a2n+l 

nlr12n+l (lh;j_.kYiYj. . * ?/k 

1 

(5.5) 
?L=l. @) 

We’calculate the Increment In kinetic energy of the fluid from Formula 

~(09 + V+)’ - (Vr~)~l do = f p \ (2V9 + V6qP) 0% do 

Fig. 2 

B transforming this expression analogously to 
i;& and by use of Green’s theorem and the equa- 

we arrive at Formula 

1 
8T2 = 6T,” - z p (&f’ + 6rp”) (vVh_rp) ds (5.6) 

c 

where bZaa IS the increment in T,” from (3.2). 

We find the function 

which enters into the integral off5.6), by expanslon VW’ lnaTaylor series 
analogous to (2.9) and calculation VBq9 by differentiation of (5.5). 

After such calculations we obtain on the surface I: 

The nature of the deformation of a spherical bubble under shock is seen. 
Points on the surface C acquire an additional velocity from the shock 
dlreated aLong the radius of the sphere and equal as a first approximation 
to 3u l COB e (u is the additional velocity which would be obtained for 
the same shock on the fluid particle at p inside a completely filled 
cavity, e is the angle measured from the direction of U ). Fig.2 shows 
a diagram of the velocities acquired on the bubble surface during shock. 
Such a distribution agrees with the results of exprrlmental studies of the 
motion of a bubble in a fluid (see, e.g. [?‘I). 

By use of (5.7), and by representing Q’ by Formula (2.9) and bsp’ bt an 
analogous formula, It Is not dlfflcult to calculate the Integral In (5. ), 
after which the increment in kinetic energy of the whole system may be wtlt- 
ten in the form 

6T = 6T“ - 3i2pQ (3Vcp,” + VGipPs) V&,’ + 0 (e’) (5.3) 

We now consider the effect of a shock in the case where the bubbie remains 
a rigid undeformable sphere with mass m = 0 . For this one may use ‘Formulas 
of Section 3. Substitute for the derivatlves of the velocities with time in 
Equations (3.10) and (3.12) the finite increments at the moment of shock, and 
neglect the lmpuises of the forces F,, pQVU atthatlntervai of time. Then 
we obtain 

(5.9) 

It Is not difficult now, by using (5.9) and (3.6), to calculate the lncre- 
ment bY at the moment.of shock. After a sim le calculation we obtain an 
expression of an accuracy comparable with (5.87. C onsequently, with accuracy 
up to terms in es, the behavior of the system In question during shock does 
not depend on whether the Initially spherical bubble 1s considered to be 
deformable (with a free surface) or rigid; then the increments bQ FE may 
be calcuiated with an accuracy up to ~6 by Formulas (1.8) and (3.71,taklng 
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into account (5.9) and setting m = 0 . The calculation gives 

SQ = BQ” - 3pQv8cp,=‘, 8K = SK” - 3pQ 2 e, (V@‘,*.~6q,“) 
8 

These formulas allow the behavior of the system during shock to be cal- 
culated. 

6, We note that Equation (3.10) holds for an accuracy of WE* -, aalFa 
also in the case where the sphere E .moves in any potential flow with a 
characteristic dimension 1 , 
ties). 

If l>a (not necessarily inside certain cavl- 
By making use of the equation of fluid motion we write Equatlon(3.10) 

in the form 
(m+ %pQ) dv,ldt =Fp-%pQ~u--fa a~$ (6.1) 

where p” as before Is the preesure at p in the undisturbed flow, i.e. in 
the absence of the sphere. Through Equation (6.1) one may study the motion 
of a small rigid sphere in the arbitrary potential flow of an ideal incom- 
pressible fluid. 

Let the undisturbed motion of the fluid be established, the force Fpbe 
a potential force(Fp= --VW), and let W and U be independent of the 
time. Then the equation of motion for the sphere E has a first Integral 

l/a (m + l/a pQ) up ZfQ)=C, @= w+1/2pQu+3/2Pp" 

where @ plays the role of potential energy and where 
$ 
' may be expressed 

by the velocity v* of the undisturbed flow by means of he Bernoulli lnte- 
gral. 

The equlllbrlum positions of the sphere In the flow correspond to statlon- 
ary points of the function 0 (where V@ = 0), and their stability& deter- 
mined bs the character of the statlonarv ooints. Let the ootentlal of the 
externai forces be harmonic functions 
for exsmple . It Is shown on p.62 of [ 

Ak = AU-= 0) such as 
] that In this case 2 

ravity force, 
p’<O, every- 

where and consequently AU%O, I.e. UI Is a YUDerharmOniC function. It Is 
known that the minimum of s&h functions is achieved on the boundary of the 
region [3] and that Internal stationary points are not strict minima. There- 
fore, for-the assumptions made, one must expect In the majority of cases to 
have an instability In the equilibrium position of the sphere inside the 
steady potential flow of an ideal incompressible fluid. 
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